Tag Archives: 3D printing

SLM-XL project: Printing large-scaled parts with Laser Powder Bed Fusion process

LISBON, 31-May-2019 — /EPR INDUSTRIAL NEWS/ — Additive manufacturing technologies are increasingly used, as they allow the manufacturing of parts with geometries not achievable by traditional processes, leading to increasingly more efficient parts for the intended applications, but mostly for smaller build envelopes and rapid prototyping. In the case of Laser Powder Bed Fusion technology, the SLM-XL project has taken the parts size shortcoming head-on and it has managed to produce large stainless steel parts of over one meter compliant with the 316L specification (image 1). To achieve this milestone, the project included the development of a prototype machine for larger parts using LPBF technology with a new, breakthrough technology, tiled laser melting, that is paving the way for the seamless production of small to large parts for the most demanding usage scenarios. Printing large-scaled parts with laser powder bed fusion process provides a fast and efficient way to create low volume parts of any length and height, allowing flexibility in design and overcoming disadvantages of traditional manufacturing technologies.

The project experiment has produced samples on the customized LPBF machine with relative densities above 99%, with the best result at 99,655%. This is a positive indicator towards the ultimate goal of zero-defect manufacturing in producing large components with LPBF. The SLM-XL projectwas led by an equipment manufacturer (Adira Metal Forming Solutions) with the collaboration of research organizations (Instituto Superior TécnicoUniversidade Nova de Lisboa – Faculdade de Ciência e Tecnologia, INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering) and one end user (MCG – Manuel Conceição Graça).

There is a growing market demand for this type of machines and this specific prototype includes a unique TLM (Tiled Laser Melting) printing process technology developed by Adira. By being able to produce larger parts, the project has brought the broad utilization of Laser Powder Bed Fusion into the mainstream, with clear benefits in efficient resources utilization, cost effectiveness for customized smaller production runs and overall flexibility on the production. The project’s outcomes included a methodology for selection of parameters to fabricate large metal parts in stainless steel 316L, as well as contributing for the development of the final prototype machine.

Empowering industry with large parts production capabilities

Laser powder bed fusion is one of the metal additive manufacturing technologies available. It is a layer by layer process in which a defined powder thickness is melted by the laser allowing the manufacture of functional complex-shaped objects, with high structural integrity for low volume and affordable costs in different materials. Being able to deliver parts produced through this technology is not a novelty, and has already been used, among other, for biomedical devices. But ensuring the production of larger parts, retaining the expected features of materials made from traditional subtractive manufacturing, has proven elusive so far. The consortium tested the ultimate ability to reach the highest possible density for a larger part, which in turn would reveal the type of potential applications.

By showing the capability of producing large build envelopes of 316L stainless steel samples, the project has paved the way for other materials to follow in the near future. To achieve the results of 99% plus density in all the part, it was required to adjust the parameters at the outer zones, and a methodology to perform this adjustment has also been proposed as an outcome of this project.

SOURCE: EuropaWire

Europe seeks to retain its leading position in industrial competitiveness with new project on Additive Manufacturing skills

PORTO SALVO, 25-Mar-2019 — /EPR INDUSTRIAL NEWS/ — Technology is evolving at a much faster pace than the development of the workers’ skills to use it. Most of the current initiatives and projects that focus on skills shortages are developing skills for existing needs and shortages, meaning that industry is already demanding personnel with those competences. Looking at a bigger picture, it means that there is no strategical approach to skills in Additive Manufacturing and that the current methodology to answer to skills needs is based on reaction instead of prediction and planning. Adding to this, the time between identification of the skills needs and shortages and the capability of deploying qualification/training modules to address them is not aligned with the industry requirements, since in most cases it takes about 1-2 years to create the required professional profile/qualification or competence unit/training module and to have it deployed.

The Wohlers Report 2018 on 3D Printing and Additive Manufacturing states that the overall additive manufacturing industry grew 21% in 2017 as the industry expanded by more than €1 thousand million. According to Ernst & Young, the demand for AM and related services has increased in the last years and is expected that in 2020 the market volume reaches €10 thousand million.

As Europe seeks to retain its leading position in industrial competitiveness, there is an urgent need to establish a platform for Additive Manufacturing (AM) skills at European, National and Regional levels.

To meet this challenge the project Sector Skills Strategy in Additive Manufacturing (SAM) started in January 2019. The initiative will tackle the current European need for developing an effective system to identify and anticipate the right skills for the Additive Manufacturing (AM) sector demands in response to the increasing labour market needs, thus, contributing for the smart, sustainable and inclusive growth of the AM sector

To address the challenges described above the SAM project intends to:

  • Build a sector skills strategy in AM;
  • Assess and anticipate skills (gaps and shortages) in AM;
  • Support with data the AM European Qualification System and foster wideness of its scope;
  • (Re) design professional profiles according to the industry requirements;
  • Develop specific relevant qualifications to be delivered for the AM Sector;
  • Increase the attractiveness of the sector to young people, whilst promoting gender balance;
  • Strengthen education-research-industry partnerships and encourage creativity “in companies and relevant educational and scientific institutions”;
  • Track students, trainees and job seekers and promote match making between job offer and search.

SAM will promote the AM sector by engaging with different target groups, namely, existing workforce, students from the primary school, vocational education and training and higher education, by putting in place an awareness campaign, stimulating the creativity of the partnership as well as of the audience.

Project partners

SAM project consortium is composed of 16 partners of which EWF is the coordinator. It encompasses industrial representatives from the AM sector, organisations involved in the fields of Vocational Education and Training (VET) and/or Higher Education (HE), and umbrella organisations. The consortium is strongly committed with the aim of supporting the growth, innovation, and competitiveness of the AM sector, since all partners have expertise in manufacturing technology and/or in the provision of education, and all of them are recognised players in the field. This ambitious project has a duration of 48 months and ends on 31st December 2022.

List of partners:

  • EWF – EUROPEAN FEDERATION FOR WELDING, JOINING AND CUTTING
  • CECIMO – CECIMO – EUROPEAN ASSOCIATION OF THE MACHINE TOOL INDUSTRIES
  • FUNDACIÓN IDONIAL
  • EPMA – THE EUROPEAN POWDER METALLURGY ASSOCIATION
  • MATERIALISE
  • GRANTA DESIGN
  • RENISHAW
  • LORTEK
  • MTC – MANUFACTURING TECNHOLOGY CENTRE
  • FUNDACIÓN AITIIP –
  • ISQ – INSTITUTO DE SOLDADURA E QUALIDADE
  • LMS – LABORATORY FOR MANUFACTURING SYSTEMS & AUTOMATION
  • UBRUN – BRUNEL UNIVERSITY LONDON
  • ECOLE CENTRALE DE NANTES
  • LZH LASER AKADEMIE GMBH
  • POLIMI – POLITECNICO DI MILANO

SAM project is funded by the European Union’s Erasmus+ (Sector Skills Alliances in VET – Blueprint).

SOURCE: EuropaWire

3dstuffshare.com – An outstanding online space to acquire free .stl files

3dstuffshare.com was established as a division to iPrint Technologies, a dedicated international company that is interested in sharing and bringing to the world the latest in 3D printing technology. With the help of 3dstuffshare.com, it aspires to offer millions of innovators, hobbyists, and others a great online community to share their various 3D experiences. It also has another division that is an online shopping website called as the ‘3Dstuffmaker.com’ that offers an exclusive range of high quality 3D printers manufactured by iPrint Technologies. With the help of 3Dstuffmaker interested individuals can get their hands on 3D printers of their choice and specifications and with 3Dstuffshare they get a virtual platform to share the creations they develop from the 3D printers.

The main highlights of 3Dstuffshare.com are as follows:-  

•  An exclusive online community for 3D printing enthusiasts

•  Learn and exchange innovative ideas

•  Users can upload or download .stl files

•  The 3D printer users can share designs for 3D printing

•  Helpful for new 3D printer users to start off with

Free .stl files is of great benefit to everyone who is interested in 3D printing. In simple terms, .stl file is a format that is used by stereolithography software to create and develop 3D models on 3D stereolithography machines or 3D printers. Getting it for free from a community that is made up of 3D printer enthusiasts, it helps the creativity fly to another level altogether.

The functioning of this interesting platform is simple that enables people to share 3D experiences wherein one can easily upload or download .stl files under the various product categories available ranging from architecture to arts and crafts to jewelry and toys. One can learn simple CAD system and newbies can obtain knowledge about 3D printing from Mrs. Kerry. The platform also enables a feature through which 3Dstuffshare will get the designer’s idea printed. The advanced features can be explored with the finest rhino CAD systems.

Started in the year 2011, iPrint Technologies is a global company that is committed to and interested in imparting knowledge about the advancements in the 3D printing technology available today. The main goal of the company is to help make 3D printing better, faster, and simpler in order to make it accessible to people from across the globe. They have successfully started working towards their goal with their two innovative ventures including 3D stuffmaker and 3D stuffshare.

Media Contact

Company : iPrint Technologies
Contact Person : Robert Grosche
Address : PO BOX 4628, Nambour, QLD 4560, AU
Email:  sales@3dstuffmaker.com 
Phone:+61280912050
http://www.iPrint-technologies.com/

Via EPR Network
More Industrial press releases